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Abstract. A high-order doubly asymptotic open boundary condition is developed for the tran-
sient analyses of scalar waves propagating in a waveguide. An equation of the dynamic stiffness
in the frequency domain of the waveguide is derived from its definition and the wave equation. A
doubly asymptotic continued fraction solution of the dynamic stiffness is determined recursively.
By introducing auxiliary variables, the open boundary condition is expressed as a system of
first-order ordinary differential equations in time. The two time-independent coefficient matri-
ces, the static stiffness and damping matrices, are symmetric and tri-diagonal. Well-established
time-stepping schemes in structural dynamics are directly applicable. No other parameters
than the orders of the low- and high-frequency expansions need to be selected by the users in
the analysis. It is demonstrated analytically or numerically that

1. Several well-established high-order absorbing boundary conditions, such as Higdon’s
multi-directional boundary, are equivalent to the singly-asymptotic continued fraction
solution at the high-frequency limit. The singly-asymptotic open boundary condition is
unable to model evanescent waves below the cut-off frequency. In a long-time analysis,
the singly-asymptotic open boundary condition suffers from numerical pollution similar
to the "fictitious reflections" caused by simple boundary conditions.

2. The dynamic stiffness of the doubly-asymptotic open boundary condition converges rapidly
to the exact solution in the frequency domain as its order increases. Evanescent waves
and late-time (low-frequency) responses are also simulated accurately. Compared to the
singly-asymptotic open boundary of the same order, the doubly-asymptotic open bound-
ary shows a significant improvement in accuracy, i.e. no "fictitious reflections" occur.

3. The amount of computer time and storage required by the doubly-asymptotic open bound-
ary condition are the same as those required by the singly-asymptotic open boundary
condition of the same order.
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1 INTRODUCTION

When wave propagation problems are modeled, it is often necessary to introduce an artificial
boundary around the region of interest so that the size of computational domain is limited to
allow the application of well-established numerical methods such as the finite element method.
The region exterior to the artificial boundary is regarded as an unbounded domain. A bound-
ary condition mimicking the unbounded domain has to be enforced on the artificial boundary
to prevent fictitious reflections that pollute the solution. A direct time-domain formulation of
the boundary condition is required when nonlinearities occur in the region of interest. Such
a boundary condition is known by various names such as absorbing, non-reflecting, open, ra-
diation, transmitting and transparent boundary conditions. In this paper, only the term “open
boundary” is employed to refer to the artificial boundary with a boundary condition mimick-
ing the unbounded domain. Extensive literature on various open boundaries exists. Excellent
literature reviews are available in papers [1,2,3,4,5,6] and books [7,8,9,10].

In theory, an exact open boundary is global in space and time, i.e. the present response at
a point on the boundary is a function of the response history at all boundary points up to the
present time. When a rigorous method (for example, the boundary element method [11, 12],
the thin-layer method [13] or the scaled boundary finite-element method [10, 14]) is employed
to construct an open boundary, the formulation is global. The convolution integral and storage
of the response history are computationally expensive for large-scale problems and long-time
calculations.

Time realization techniques have been proposed to construct temporally local open bound-
aries from the dynamic stiffness matrices obtained at discrete frequencies from analytical solu-
tion or by a rigorous method. In References [15, 16, 17], a Padé approximation of the dynamic
stiffness matrix is constructed by using a curve fitting technique based on the least-squares
method. A temporally local open boundary is formulated after expressing the Padé approxima-
tion as unit fractions. In Reference [18], the Padé approximation is expressed as a continued
fraction leading to a mixed-variable method. In Reference [19], system theory is applied to
construct a temporally local open boundary from the unit-impulse response obtained from the
scaled boundary finite-element method.

Moreover, a large number of approximate open boundary conditions have been developed.
Well-known examples include the viscous boundary [20], the superposition boundary [21], the
paraxial boundary [22] and the extrapolation boundary [23]. Generally speaking, they are spa-
tially and temporally local, i.e. the response at a point is coupled with the response at a few
adjacent points during a few previous time steps only. These local open boundaries are simple
and computationally efficient by themselves, but have to be applied to an artificial boundary
sufficiently away from the region of interest in order to obtain results of acceptable accuracy.
This increases the total computational effort.

To increase the accuracy and efficiency of simple open boundaries, high-order local open
boundaries have been proposed. This type of open boundary has the potential of leading to
accurate results as the order of approximation increases. At the same time, it is computationally
efficient owing to its local formulation. Examples of early developments include the parax-
ial boundary [22], the Bayliss, Gunzburger and Turkel (BGT) boundary [24] and the multi-
direction boundary [25]. However, the order of derivative in these formulations increases with
the order of the open boundary. Beyond the second order, the implementation in a finite-element
computer program becomes complex and instability may occur [8].

Researchers in several fields have shown their strong interest in developing open boundaries
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of arbitrarily high order (see, e.g. [26, 27, 28, 29, 30, 31, 32]). Literature reviews are available,
e.g., in References [4,6]. Most of the open boundaries are, however, limited to straight, circular
and spherical boundaries. Special corner conditions have to be devised for rectangular bound-
aries. Krenk [30] showed that several of well-established open boundaries can be formulated
as a rational function approximation (Padé or continued fraction expansion) of the plane wave
representation for scalar waves.

All the above high-order open boundaries were constructed to absorb propagating waves ra-
diating energy. As they are singly asymptotic at the high-frequency limit, these high-order open
boundaries are appropriate for radiative fields, i.e., virtually all of the field energy is propagating
out to infinity [33]. In some classes of applications, a part of the total energy may be trapped
near the region of interest and may not propagate to infinity. The best-known example is prob-
ably the evanescent waves occurring in a semi-infinite layer with a constant depth (also known
as a waveguide). It is explained in Reference [34] that inclusion of evanescent modes improves
the accuracy of the long-time behavior of a high-order open boundary. Another example is the
class of problems where the dimensionless frequencya0 = ωr0/c (ω is the smallest excitation
frequency of interest,r0 is a characteristic length of the region of interest,c is the wave velocity)
is very low (statics can be regarded as the limiting casea0 → 0). These wave fields are largely
non-radiative. To achieve reasonably accurate results at low frequencies, i.e., over long time,
the order of an open boundary has to be very high, thereby leading to large computational cost.
In most of the publications on high-order open boundaries, the numerical results are shown for
only the first few periods, and long-time responses are rarely reported.

From an application point of view, it is highly desirable to develop a temporally local open
boundary that is capable of accurately mimicking an unbounded domain over the entire fre-
quency range (i.e. from zero to infinity). One advance toward this objective is the introduction
of the doubly-asymptotic boundaries [33, 35, 36, 37, 38]. This formulation is spatially global
as the dynamic stiffness is exact not only at the high-frequency limit but also at statics. To the
knowledge of the authors, the highest order reported is three [39].

Recently, a new approach to constructing temporally local open boundaries of arbitrarily
high order has been proposed in Reference [40]. It is applicable to both scalar and vector
waves. The geometry of the boundary of the unbounded domain can be arbitrary as long as the
scaling requirement (there exists a zone from where the whole boundary is visible) is satisfied.
Anisotropic unbounded media are handled without additional computation cost. Different from
most of existing approaches, it seeks a continued fraction solution for the equation of the dy-
namic stiffness matrix of an unbounded domain obtained in the scaled boundary finite-element
method [14]. Each term of the continued fraction is a linear function of the excitation frequency
ω. The constant matrices in the continued fraction are determined recursively by satisfying the
scaled boundary finite-element equation at the high-frequency limit. No explicit solution of the
dynamic stiffness matrix at discrete frequencies is required. By using the continued fraction
solution, the force-displacement relationship of the unbounded domain is formulated as a tem-
porally local open boundary condition in the time domain. However, like other high-order open
boundaries, this open boundary is inappropriate to model evanescent waves, and the conver-
gence rate at low frequencies is much slower than that at high frequencies.

In this paper, a technique for constructing a high-order doubly asymptotic open boundary
is proposed by extending the work in Reference [40]. Only scalar waves and an unbounded
domain with simple geometry, namely a semi-infinite layer with a constant depth (a waveguide),
are considered. The open boundary of a semi-infinite layer with a constant depth can be applied
directly to solve practical problems by introducing a straight artificial boundary [17, 34]. The
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investigations into the simple cases also provide insights into the basic numerical phenomena
involved in high-order open boundaries such as the failure in representing evanescent waves and
the relative poor performance at low frequencies. Furthermore, a novel approach to developing
an efficient open boundary for the semi-infinite layer is proposed.

2 DYNAMIC STIFFNESS OF SEMI-INFINITE LAYER WITH CONSTANT DEPTH

The linear homogeneous scalar wave equation is expressed as

∇2u =
1
c2 ü (1)

whereu = u(x, y, z, t) denotes the wave field,∇2 the Laplace operator andc the given wave
speed. The initial conditions of an unbounded domain which is at rest are expressed as

u = u̇ = 0 att = 0 (2)

By employing the method of separation of variables, Eq. (1) can be transformed to a series of
one-dimensional wave equations. From a one-dimensional wave equation and the definition of
a dynamic stiffness coefficient, an equation of the dynamic stiffness coefficient is then derived.

A constant-depthh semi-infinite layer with thex-axis of the coordinate system that is aligned
at the lower boundary of the layer is shown in Fig. 1. The formulation of the proposed open
boundary is based on the dynamic stiffness representing the property of the semi-infinite layer
and is independent of the coordinate system. The open boundary is thus applicable to semi-
infinite layers of any orientation. A distributed tractionτ0(t) is assumed to be applied to the
vertical boundaryΓV (at x = x0). The homogeneous boundary conditions prescribed on the
parallel upper boundaryΓU and lower boundaryΓL are satisfied in the method of separation of
variables by eigenfunctions. For example, when the upper boundaryΓU is free (i.e. u,y(y =
h) = 0) and the lower boundaryΓL is fixed (i.e.u(y= 0) = 0) the eigenfunctions are sin(λiy/h)
where the eigenvalues are equal toλi = (2i +1)π/2 for i = 0, 1, . . .. Note that as the eigenvalue
λi increases, the eigenfunction varies more rapidly along the vertical boundary.

Figure 1: Semi-infinite layer with constant depth

For a mode with a modal eigenvalueλ , the one-dimensional wave equation is expressed as

∂ 2ũ
∂x2 −

(
λ

h

)2

ũ =
1
c2

¨̃u (3)

whereũ = ũ(x, t) is the modal displacement. The modal traction is denoted asτ̃0(t) at x = x0.
Once the solution of Eq. (3) satisfying both the boundary condition atx = x0 and the radia-
tion condition atx→ +∞ is known, the solution for the wave propagation in the semi-infinite
layer can be obtained by modal superposition. Hereafter, only the modal equation in Eq. (3) is
addressed, and the word “modal” is omitted for the sake of simplicity except where confusion
may arise.
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By assuming the time-harmonic behavior ˜u = Ũ(ω,x)e+iωt and τ̃0(t) = R̃(ω,x)e+iωt (ω is
the excitation frequency), Eq. (3) is rewritten in the frequency domain as

d2Ũ
dx2 +

1
h2

(
a2

0−λ
2)Ũ = 0 (4)

whereŨ = Ũ(ω,x) is the displacement amplitude, anda0 is a dimensionless frequency

a0 =
ωh
c

(5)

2.1 Analytical solution

The solution of Eq. (4) satisfying the radiation condition for the semi-infinite layer extending
to x→+∞ (Fig. 1) is

Ũ = Ce−
√

λ 2−a2
0x/h (6)

with the integration constantC. A cut-off frequency exists in Eq. (6) at the dimensionless fre-
quencya0 = λ . Below the cut-off frequency, i.e.a0 < λ , the displacement decays exponentially.
No propagating waves exist, in other words, evanescent waves are present. Above the cut-off
frequency, i.e.a0 > λ , Eq. (6) describes a wave propagating with a frequency-dependent phase
velocity.

For the semi-infinite layer extending to the right-hand side, the force amplitudeR̃= R̃(ω,x)
on a vertical boundary at arbitraryx is expressed as

R̃=−h
dŨ
dx

(7)

Substituting Eq. (6) into Eq. (7) results in

R̃=−h
dŨ
dx

= C
√

λ 2−a2
0e−

√
λ 2−a2

0x/h (8)

The open boundary condition is represented as a force-displacement relationship. In the fre-
quency domain, this relationship is defined by the dynamic stiffness coefficientS= S(ω,x) at a
vertical line with a constantx−coordinate

R̃= SŨ (9)

It is analogous to the DtN operator [41]. The solution for the dynamic stiffness coefficient can
be obtained from its definition in Eq. (9) with the substitution of Eqs. (6) and (8)

S(a0) =
√

λ 2−a2
0 (10)

Note that the dynamic stiffness coefficientS(a0) is only a function of the dimensionless fre-
quencya0 and is independent of the value of thex coordinate (Eq. (5)). Below the cut-off
frequency, i.e.a0 < λ , S(a0) is a real number whereas the imaginary part representing radiation
damping vanishes. At the cut-off frequencya0 = λ , S(a0) is equal to zero representing the
resonance of the semi-infinite layer. Above the cut-off frequency, i.e.a0 > λ , S(a0) is pure
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imaginary. Equation (10) normalized by the modal eigenvalueλ is the square-root operator
widely used in constructing open boundaries

S(a0)
λ

=

√
1−
(a0

λ

)2
(11)

To obtain a reference solution to validate numerical results in the time domain, the response
to a unit impulse of tractioñτ0I (t) = δ (t) (δ (t) represents the Dirac-delta function) applied at
x= x0 is evaluated. The amplitude of the displacement responseŨI is determined from Eqs. (10)
and (9) with the Fourier transform of the unit impulseR̃0I = 1

ŨI =
1√

λ 2−a2
0

(12)

The unit-impulse response ˜uI (t) is equal to the inverse Fourier transform ofŨI (Eq. (12))

ũI (t) =
c
h

J0

(
λ

ct
h

)
H(t) (13)

whereJ0 is the zero order first kind Bessel function,H(t) is the Heaviside-step function (H(t <
0) = 0, H(t ≥ 0) = 1), andt̄ = ct/h represents the dimensionless time. At large time (t̄ � 1),
the asymptotic solution of the unit-impulse response is expressed as

ũI (t)→
√

2h
πλct

cos
(

λ
ct
h
− π

4

)
(14)

It oscillates at a period ofT = 2πh/(λc). This period corresponds to the dimensionless cut-off
frequencya0 = λ where the dynamic stiffness coefficient is equal to zero. The unit-impulse
response exhibits a long-lasting oscillation with a very slow decay rate of

√
T/t (see Fig. 10 in

Section 5).
The displacement response to a prescribed tractionτ̃0(t) is expressed as a convolution integral

ũ(t) =
c
h

∫ t

0
J0

(
λ

c(t− τ)
h

)
τ̃0(τ)dτ (15)

2.2 Equation of dynamic stiffness coefficient

An equation of the dynamic stiffness coefficient is derived from the wave equation and the
definition of the dynamic stiffness coefficient. Eliminating the force amplitudeR̃ from Eqs. (7)
and (9) leads to

h
dŨ
dx

=−SŨ (16)

Differentiating Eq. (16) with respect tox and multiplying the result byh yield

h2d2Ũ
dx2 =−Sh

dŨ
dx
−h

dS
dx

Ũ =
(

S2−h
dS
dx

)
Ũ (17)

Substituting Eq. (17) into Eq. (4) multiplied byh2 results, for an arbitrarỹU , in

S2− dS
dx

+a2
0−λ

2 = 0 (18)
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As botha0 (Eq. (5)) and the eigenvalueλ are independent ofx, the dynamic stiffness coefficient
is a function ofa0 only, i.e., dS/dx = 0. Equation (18) is, therefore, rewritten as

(S(a0))2 +a2
0−λ

2 = 0 (19)

which is an algebraic equation. Its positive solution is given in Eq. (10).

3 DOUBLY-ASYMPTOTIC CONTINUED FRACTION SOLUTION FOR DYNAMIC
STIFFNESS

A continued fraction solution for the dynamic stiffness coefficient can be obtained recur-
sively as a singly-asymptotic solution at the high-frequency limit (ω →+∞) as derived in Ref-
erence [40]. However, in the case of semi-infinite layer, it does not converge at all when the
frequency is below the cut-off frequency as will be demonstrated in Section 5.

In order to improve the behavior of the singly-asymptotic solution, a doubly-asymptotic con-
tinued fraction solution is thus developed. After the high-frequency continued fraction solution
is determined as in Reference [40], the differential equation of the residual term is solved again
as a continued fraction, but the constants are determined at the low-frequency limit (ω → 0)
instead.

3.1 High-frequency continued fraction

The construction of the high-frequency continued fraction solution for Eq. (19) follows the
procedure in Reference [40]. In this particular case, an orderMH continued fraction solution is
expressed as

S(a0) = (ia0)C∞−
λ 2

(ia0)Y
(1)
1 − λ 2

(ia0)Y
(2)
1 − λ 2

· · ·− λ 2

(ia0)Y
(MH)
1 − λ 2

Y(MH+1)(a0)

(20)

where the constantsC∞ andY(i)
1 (i = 1, 2, . . . , MH) are determined by satisfying Eq. (19) at the

high-frequency limit (a0→+∞). The negative sign in front of each term is selected intentionally
so that the open boundary can be easily expressed with symmetric coefficient matrices (see
Section 4). Equation (20) is equivalent to

S(a0) = (ia0)C∞−λ
2(Y(1)(a0))−1 (21a)

Y(i)(a0) = (ia0)Y
(i)
1 −λ

2(Y(i+1)(a0))−1 (i = 1, 2, . . . , MH) (21b)

whereY(1)(a0) is of the order(ia0)−1 as a0 → +∞. When a singly-asymptotic solution is
considered, the residual termλ 2(Y(MH+1)(a0))−1 is neglected.

Substituting Eq. (21a) into Eq. (19) results in an equation in terms of a power series of(ia0)

(ia0)2(C2
∞−1

)
+λ

2
(
−1−2(ia0)C∞(Y(1)(a0))−1 +λ

2(Y(1)(a0))−2
)

= 0 (22)
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This equation is satisfied by setting, in descending order, the two terms to zero. The first term is
an equation for damping coefficientC∞. To satisfy the radiation condition, the positive solution
is chosen

C∞ = 1 (23)

The second term of Eq. (22) is an equation ofY(1)(a0) asC∞ is known (Eq. (23)). To derive a
recursive formula for determining the constants of the continued fraction, it is rewritten as the
i = 1 case of

λ
2−2b(i)

1 (ia0)Y(i)(a0)− (Y(i)(a0))2 = 0 (24)

with the constant

b(1)
1 = 1 (25)

Substituting Eq. (21b) into Eq. (24) leads to an equation in terms of a power series of(ia0)

− (ia0)2
(
(Y(i)

1 )2 +2b(i)
1 Y(i)

1

)
+λ

2
(

1+2(ia0)(Y
(i)
1 +b(i)

1 )(Y(i+1)(a0))−1

−λ
2(Y(i+1)(a0))−2

)
= 0 (26)

Again, this equation is satisfied by setting the two terms to zero. The non-zero solution of the
(ia0)2 term is equal to

Y(i)
1 =−2b(i)

1 (27)

By using the solution ofY(i)
1 in Eq. (27), the second term of Eq. (26) is rearranged as

λ
2 +2b(i)

1 (ia0)Y(i+1)(a0)− (Y(i+1)(a0))2 = 0 (28)

Introducing the recursive formula for updating the constant

b(i+1)
1 =−b(i)

1 (29)

Equation (28) is simply the(i +1) case of Eq. (24). From Eqs. (25) and (29),

b(i)
1 = (−1)i+1 (30)

applies.Y(i)
1 is obtained explicitly from Eq. (27) as

Y(i)
1 = (−1)i2 (31)

The high-frequency continued fraction solution in Eq. (20) (or Eq. (21)) is constructed from
the solutions of the constantsC∞ in Eq. (23) andY(i)

1 in Eq. (31). For example, Eq. (20) is
expressed for the orderMH = 2 high-frequency continued fraction as

S(a0) = (ia0)−
λ 2

−2(ia0)−
λ 2

2(ia0)−
λ 2

Y(3)(a0)

(32)
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3.2 Link with other open boundaries for plane waves

The singly-asymptotic continued fraction solution in Eq. (20) is expressed by using Eqs. (23)
and (31) as

S(a0)
(ia0)

= 1− (λ/(ia0))2

−2− (λ/(ia0))2

2− (λ/(ia0))2

−2− . . .

= 1+
(λ/(ia0))2

2+
(λ/(ia0))2

2+
(λ/(ia0))2

2+ . . .

= 1− (λ/a0)2

2− (λ/a0)2

2− (λ/a0)2

2− . . .

(33)

Several open boundaries have been constructed based on the continued fractions of the func-
tion

√
1+x, wherex may represent the wave number, pseudo-differential operator or the angle

of incidence of a plane wave depending on the particular formulation. For example, the third
approximation expressed in Eq. 1.13 of Reference [42] is based on the continued fraction

√
1+x = 1+

x

2+
x
2

(34)

Whenx = (λ/ia0)2 =−(λ/a0)2 is assumed, Eq. (34) is equivalent to the second order singly-
asymptotic continued fraction in Eq. (33).

It has been shown in Reference [30] that, when all the angles of ideal transmission are se-
lected as 0, the multi-directional open boundary proposed by Higdon [43] corresponds to the
continued fraction of cosθ =

√
1−sin2

θ (Eq. 15 [30])

cosθ = 1− sin2
θ

2− sin2
θ

2− sin2
θ

2− . . .

(35)

whereθ is the angle of incidence (the angle between the direction of propagation of a plane
wave and the outward normal of the boundary). Equation (35) is equivalent to Eq. (34) for
the same order of continued fraction whenx = −sin2

θ is assumed. By comparing Eq. (33) to
Eq. (35), it can be identified that the two equations are identical when setting

sinθ = λ/a0 (36)

Equation (36) relates the dimensionless frequencya0 to the angle of incidenceθ .
As sinθ is bounded between 0 and 1, the performance of open boundaries based on this

continued fraction is controlled fora0≥ λ , i.e. above the cut-off frequency, only. Their accuracy
below the cut-off frequency (a0 < λ ), i.e. for the evanescent waves, is not guaranteed. This
is illustrated in Fig. 2 by comparing the continued fraction solution with the exact solution
(Eq. (10)). The dynamic stiffness coefficient and the dimensionless frequency are normalized
as expressed in Eq. (11). When the frequency is slightly above the cut-off frequency (a0/λ >
1.25), the orderMH = 2 continued fraction solution is already very accurate. However, the error
below the cut-off frequency is very large. The imaginary part exhibits a discontinuous point.
The real part of the continued fraction solution is always equal to zero independent of the order
as expected from Eq. (32). As the order of the continued fraction increases toMH = 5 and
MH = 11, the accuracy of the results at frequencies immediately above the cut-off frequency
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improves. The result ofMH = 11 is indistinguishable from the exact solution above the cut-off
frequency. Below the cut-off frequency, the number of discontinuous points in the imaginary
part increases and the accuracy does not improve. The error at the low-frequency range affects
the accuracy of late-time response in the time domain as illustrated numerically in Section 5.

Figure 2: High-frequency continued fraction solution for dynamic stiffness coefficient of semi-infinite layer

A reflection coefficient based on the angles of incidence of propagating plane waves is of-
ten derived in the literature to evaluate the performance of an open boundary. It is meaningful
for only 0≤ sinθ ≤ 1, i.e., the frequency rangea0 ≥ λ . As the order increases, the reflection
coefficient becomes smaller but the accuracy below the cut-off frequency does not necessarily
improve. This is consistent with the statement in Reference [34] that: “a comparison of bound-
ary conditions based solely on the magnitude of reflection coefficients for propagating modes is
a poor predictor of actual performance, particularly as the order is increased”.

3.3 Doubly-asymptotic continued fraction

The procedure in Section 3.1 leads to not only a high-frequency continued fraction solution
for the dynamic stiffness coefficient but also an equation of the residual termY(MH+1)(a0), i.e.,

the i = MH + 1 case of Eq. (24) with the constantb(MH+1)
1 given in Eq. (30). To determine

a solution that is valid over the whole frequency range, a low-frequency continued fraction
solution for the residual termY(MH+1)(a0) is sought.

Denoting the residual term as

YL(a0) = Y(MH+1)(a0) (37)

the i = MH +1 case of Eq. (24) is expressed as

λ
2−2bL(ia0)YL(a0)− (YL(a0))2 = 0 (38)

with the constant

bL = b(MH+1)
1 = (−1)MH (39)

given in Eq. (30). The continued fraction solution forYL(a0) at the low-frequency limit is
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written as

YL(a0) = Y(0)
L0 +(ia0)Y

(0)
L1 −

(ia0)2

Y(1)
L0 −

(ia0)2

Y(2)
L0 −

(ia0)2

. . .− (ia0)2

Y(ML)
L0

(40)

It is equivalent to

YL(a0) = Y(0)
L0 +(ia0)Y

(0)
L1 − (ia0)2(Y(1)

L (a0))−1 (41a)

Y(i)
L (a0) = Y(i)

L0 − (ia0)2(Y(i+1)
L (a0))−1 (i = 1, 2, . . . , ML) (41b)

where the constant term in Eq. (41b) is omitted as its solution is equal to zero. For anML

order continued fraction, the residual(ia0)2/Y(i+1)
L (a0) is neglected. The constantsY(i)

L0 (i =
1, 2, · · · , ML) andY(0)

L1 are determined by satisfying Eq. (38) at the low-frequency limit (a0→ 0).
Substituting Eq. (41a) into Eq. (38) leads to an equation in terms of a power series of(ia0)

(
λ

2− (Y(0)
L0 )2

)
− (ia0)

(
2bLY(0)

L0 +2Y(0)
L0 Y(0)

L1

)
+(ia0)2

(
−2bLY(0)

L1 − (Y(0)
L1 )2

+2(Y(0)
L0 +(ia0)(Y

(0)
L1 +bL))(Y

(1)
L (a0))−1− (ia0)2(Y(1)

L (a0))−2
)

= 0 (42)

As the low-frequency solution is being sought, Eq. (42) is satisfied by setting the coefficients of
the power series to zero in ascending order. Setting the constant term to zero results in

λ
2− (Y(0)

L0 )2 = 0 (43)

Out of the two solutions, the one leading to the correct static stiffnessS(a0 = 0) = λ should be

chosen. Inspecting Eq. (20) withY(MH+1)(a0 = 0) = YL(a0 = 0) = Y(0)
L0 (Eqs. (37) and (41a)),

the solution is

Y(0)
L0 = (−1)MH+1

λ (44)

Setting the coefficient of the(ia0) term in Eq. (42) to zero leads to an equation forY(0)
L1 . By

using Eq. (39), its solution is expressed as

Y(0)
L1 =−bL = (−1)MH+1 (45)

Setting the coefficient of the(ia0)2 term in Eq. (42) to zero yields an equation ofY(1)
L (a0). After

substituting the solutions forY(0)
L0 (Eq. (44)) andY(0)

L1 (Eq. (45)), the equation is expressed as the
i = 1 case of the following equation:

(ia0)2−2b(i)
L Y(i)

L (a0)− (Y(i)
L (a0))2 = 0 (46)

with the constant (Eq. (39))

b(1)
L =−bLλ = (−1)MH+1

λ (47)

11
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A recursive procedure for determining the constantsY(i)
L0 in Eq. (41b) is established by substi-

tuting Eq. (41b) into Eq. (46). The resulting expression is arranged as

−
(

2b(i)
L Y(i)

L0 +(Y(i)
L0 )2

)
+(ia0)2

(
1+2(b(i)

L +Y(i)
L0 )(Y(i+1)

L (a0))−1

−(ia0)2(Y(i+1)
L (a0))−2

)
= 0 (48)

Setting the term independent of(ia0) to zero yields an equation forY(i)
L0 . Its non-zero solution is

Y(i)
L0 =−2b(i)

L (49)

Setting the(ia0)2 term to zero and using Eq. (49) result in the equation ofY(i+1)
L (a0)

(ia0)2 +2b(i)
L Y(i+1)

L (a0)− (Y(i+1)
L (a0))2 = 0 (50)

It is simply the(i +1) case of Eq. (46) with the constant

b(i+1)
L =−b(i)

L (51)

Equations (47) and (51) lead to

b(i)
L = (−1)MH+i

λ i = 1,2, . . .ML (52)

The constants of the continued fraction are expressed explicitly as

Y(i)
L0 = (−1)MH+i+12λ i = 1,2, . . .ML (53)

As an example, the orderML = 2 low-frequency continued fraction for the residualY(3)(a0)
of the orderMH = 2 high-frequency continued fraction solution is expressed as

Y(3)(a0) = YL(a0) =−λ − (ia0)−
(ia0)2

2λ − (ia0)2

−2λ

(54)

The doubly-asymptotic continued fraction solution is constructed by combining the high-
frequency continued fraction solution in Eq. (20) (or Eq. (21)) with the low-frequency solution
in Eq. (40) (or Eq. (41)) usingY(MH+1)(a0) = YL(a0) (Eq. (37)). For example, the orderMH =
ML = 2 doubly-asymptotic continued fraction solution is obtained from Eqs. (32) and (54) as

S(a0) = (ia0)−
λ 2

−2(ia0)−
λ 2

2(ia0)−
λ 2

−λ − (ia0)−
(ia0)2

2λ − (ia0)2

−2λ

(55)

The real and imaginary parts of the orderMH = ML = 2 doubly-asymptotic solution are com-
pared with the exact solution in Fig. 3. The present result is very accurate outside of a small
range around the cut-off frequency.

Further evaluation of the accuracy of the doubly-asymptotic solution is reported in Section 5.
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Figure 3: Doubly-asymptotic continued fraction solution for dynamic stiffness coefficient of semi-finite layer:
MH = ML = 2

4 IMPLEMENTATION OF CONTINUED FRACTION SOLUTION IN THE TIME DO-
MAIN

In the frequency domain, the open boundary condition is expressed as the force-displacement
relationship (Eq. (9))

R̃= S(a0)Ũ (56)

When the dynamic stiffness coefficientS(a0) is expressed as a continued fraction solution, the
force-displacement relationship can be formulated in the time domain as a system of first-order
ordinary differential equations with time-independent coefficient matrices, which represents a
temporally local open boundary.

A doubly-asymptotic continued fraction solution which includes the expressions of the semi-
infinite layer as special case is considered

S(a0) = K∞ +(ia0)C∞−m2(Y(1)(a0))−1 (57a)

Y(i)(a0) = Y(i)
0 +(ia0)Y

(i)
1 −m2(Y(i+1)(a0))−1 (i = 1, 2, . . . , MH) (57b)

YL(a0) = Y(MH+1)(a0) (57c)

YL(a0) = YL0 +(ia0)YL1− (ia0)2(Y(1)
L (a0))−1 (57d)

Y(i)
L (a0) = Y(i)

L0 +(ia0)Y
(i)
L1 − (ia0)2(Y(i+1)

L (a0))−1 (i = 1, 2, . . . , ML) (57e)

with the dimensionless frequency

a0 =
ωr0

c
(58)

Note that in Eqs. (21) and (41),K∞ = Y(i)
0 = Y(i)

L1 = 0 andm= λ applies, and the characteristic
lengthr0 in Eq. (58) must be replaced with the depthh of the layer. Substituting Eq. (57a) into
the force-displacement relationship in Eq. (56) leads to

R̃= S(a0)Ũ = K∞Ũ +(ia0)C∞Ũ−mŨ (1) (59)

where the auxiliary variablẽU (1) is defined as

Ũ (1) = m(Y(1)(a0))−1Ũ (60)

13
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and then reformulated as

mŨ = Y(1)(a0)Ũ (1) (61)

which is in the same form as the force-displacement relationship (Eq. (56)). Similarly, an
auxiliary variable is introduced for each term of the continued fraction in Eq. (57b)

mŨ (i) = Y(i+1)(a0)Ũ (i+1) (i = 0, 1, 2, . . . , MH) (62)

where Eq. (61) is included as thei = 0 case withŨ (0) = Ũ . Multiplying Eq. (57b) byŨ (i) and
using the definition of auxiliary variables in Eq. (62) formulated ati andi−1 result in

mŨ (i−1) = Y(i)
0 Ũ (i) +(ia0)Y

(i)
1 Ũ (i)−mŨ (i+1) (i = 1, 2, . . . , MH) (63)

The residual̃U (MH+1) of an orderMH high-frequency continued fraction solution is expressed
in Eq. (62) ati = MH as

mŨ (MH) = Y(MH+1)(a0)Ũ (MH+1) (64)

Y(MH+1) = YL(a0) (Eq. (57c)) is expressed in Eq. (57d) as a low-frequency continued fraction
solution. Multiplying Eq. (57d) bỹU (MH+1) and using Eqs. (57c) and (64) lead to

mŨ (MH) = YL0Ũ
(MH+1) +(ia0)YL1Ũ

(MH+1)− (ia0)Ũ
(1)
L (65)

where the auxiliary variablẽU (1)
L is defined in

(ia0)Ũ (MH+1) = Y(1)
L (a0)Ũ

(1)
L (66)

Again, an auxiliary variable is introduced for each term of the continued fraction in Eq. (57e)
as

(ia0)Ũ
(i)
L = Y(i+1)

L (a0)Ũ
(i+1)
L (i = 0, 1, 2, . . . , ML) (67)

with Ũ (0)
L = Ũ (MH+1). Multiplying Eq. (57e) byŨ (i)

L and using Eq. (67) ati−1 andi yield

(ia0)Ũ
(i−1)
L = Y(i)

L0 Ũ (i)
L +(ia0)Y

(i)
L1 Ũ (i)

L − (ia0)Ũ
(i+1)
L (i = 1, 2, . . . , ML) (68)

For the orderML low-frequency solution, the approximatioñU (ML+1)
L = 0 is introduced.

Equations (59), (63), (65) and (68) are all combined to form a matrix equation

([Kh]+ iω[Ch]){Z}= {F} (69)

with

{Z} = [Ũ , Ũ (1), · · · , Ũ (MH), Ũ (MH+1), Ũ (1)
L , · · · , Ũ (ML)

L ]T (70a)

{F} = [R̃, 0, · · · , 0, 0, 0, · · · , 0]T (70b)
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[Kh] =



K∞ −m

−m Y(1)
0

. ..
.. . . .. −m

−m Y(MH)
0 −m
−m YL0 0

0 Y(1)
L0

. ..
... . .. 0

0 Y(ML)
L0


(70c)

[Ch] =
h
c



C∞ 0

0 Y(1)
1

...
... ... 0

0 Y(MH)
1 0
0 YL1 −1

−1 Y(1)
L1

.. .
... .. . −1

−1 Y(ML)
L1


(70d)

The function{Z} includes the displacement amplitude on the boundary and all the auxiliary
variables, and the only non-zero entry at the right-hand side{F} is the excitation forcẽRon the
boundary. Note that Eq. (58) is substituted into the equation to replace ia0 with iω. The time-
independent matrices[Kh] and[Ch] are tri-diagonal and symmetric. Equation (69) is expressed
in the time domain as

[Kh]{z(t)}+[Ch]{ż(t)}= { f (t)} (71)

It represents a temporally local high-order open boundary applicable to one mode of wave
propagation in a semi-infinite layer with a constant depth.

5 NUMERICAL EXAMPLES

The accuracy of the proposed doubly-asymptotic open boundary is evaluated in this section.
Newmark’s method withγ = 0.5 andβ = 0.25 (average acceleration scheme) is employed for
the time integration. The size of the time step is chosen as∆t = 0.01h/(λc) for the semi-infinite
layer.

When the present doubly-asymptotic open boundary is employed, the only two parameters
that the users must select are the orders of high- and low-frequency continued fractionsMH and
ML. In this paper, the same value is chosen for both parameters. With this simple, although not
necessarily optimal, choice, the doubly-asymptotic open boundaries perform much better than
the singly-asymptotic open boundaries with the same number of terms do.

The excitation by a unit impulse of tractioñτ0I (t) = δ (t) is chosen to evaluate the accuracy
of open boundaries as it covers the whole frequency range. When a unit impulse is applied,
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the initial condition is obtained by integrating Eq. (71) with the matrix[Ch] given in Eq. (70d)
(Note that the first entry of{ f (t)} and{z(t)} is τ̃0I (t) andũ(t), respectively.)

ũ(t = 0) = c/(hC∞) (72)

To investigate the performance of the open boundary at a specified frequency range, the
surface traction is prescribed as a Ricker wavelet. The time history of the Ricker wavelet is
given as

τ̃0(t) = AR

(
1−2

(
t− ts

t0

)2
)

exp

(
−
(

t− ts
t0

)2
)

(73)

wherets is the time when the wavelet reaches its maximum, 2/t0 is the dominant angular fre-
quency of the wavelet andAR is the amplitude. The Fourier transform of the wavelet is expressed
as

R̃0(ω) = 0.5
√

πARt0(ωt0)2e−0.25(ωt0)2
(74)

A Ricker wavelet with the parameters̄ts = cts/h = 1, t̄0 = ct0/h = 0.2 andAR = 10 is shown
in Fig. 4(a). The amplitude of its Fourier transform is plotted in Fig. 4(b). The dominant
dimensionless frequency of this wavelet isa0 = 10.

(a) (b)

Figure 4: Prescribed traction as a Ricker wavelet: (a) Time history; (b) Fourier transform

The case of a semi-infinite layer with a constant depth is a stringent test due to the existence
of a cut-off frequency. Since the dynamic stiffness is not smooth at the cut-off frequency, this
case is especially challenging for the doubly-asymptotic continued fraction solution. At the
cut-off frequency, the dynamic stiffness is equal to zero. As a result, waves around the cut-
off frequency decay at a very slow rate (Eq. (14)). This requires that an open boundary has
to be accurate over a large time duration. The investigation of the semi-infinite layer is also
significant because the construction of several higher-order open boundaries is related to this
case as shown in Section 3.2.

The performance of the singly-asymptotic open boundary based solely on the high-frequency
continued fraction solution is evaluated at first. The dynamic stiffness coefficient of the order
MH = 5 continued fraction is plotted in Fig. 2. The cut-off frequency exists ata0/λ = 1. The
large error of the dynamic stiffness coefficient below the cut-off frequency (a0/λ < 1) indicates
that the high-order singly-asymptotic open boundary is unable to transmit evanescent waves.
This is confirmed by the unit-impulse response of theMH = 5 open boundary plotted in Fig. 5.
The early-time (high-frequency) response is very accurate. The response after the dimensionless
time λ t̄ > 10 suddenly exhibits a very large error and the amplitude of the error does not decay

16



S. Prempramote and C. Song

with time. Since this phenomenon is very similar to fictitious reflections caused by enforcing
a simple (free or fixed) boundary condition at a certain distance, it is referred to as “fictitious
reflections” in this paper.

Figure 5: Unit-impulse response of semi-infinite layer by singly-asymptotic boundary:MH = 5

The effect of the order of the singly-asymptotic open boundary on its accuracy is also investi-
gated by considering the ordersMH = 11 andMH = 99. The orderMH = 11 continued fraction
solution has 12 terms (double the number of terms of theMH = 5 solution) while the order
MH = 99 continued fraction solution has 100 terms. Above the cut-off frequency, the dynamic
stiffness coefficients of both open boundaries are indistinguishable from the exact solution as
shown in Fig. 2 (If the dynamic stiffness coefficient of theMH = 99 open boundary is plotted
in Fig. 2, the result will be similar to that of theMH = 11 open boundary above the cut-off
frequency.). The unit-impulse responses of both open boundaries are shown in Fig. 6. As the
order increases, the accuracy improves. However, significant “fictitious reflections” still occur,
albeit at later time, even at the orderMH = 99. As the amplitude of the “fictitious reflections”
does not decay with time, the singly-asymptotic open boundary is unsuitable for the analysis of
long-time response.

(a) (b)

Figure 6: Unit-impulse response of semi-infinite layer by singly-asymptotic boundary: (a)MH = 11; (b)MH = 99

The defect of the singly-asymptotic open boundary in representing low-frequency responses
can be mended by employing the doubly-asymptotic continued fraction solution in Section 3.3.
The corresponding higher-order doubly asymptotic open boundary is constructed in Section 4.
For theMH = ML = 2 doubly-asymptotic open boundary, of which the dynamic stiffness co-
efficient is shown in Fig. 3, the unit-impulse response is plotted in Fig. 7. It decays gradually
and no “fictitious reflection” appears. It is observed by comparing Fig. 7 with Fig. 5 that the
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MH = ML = 2 open boundary is much more accurate than theMH = 5 open boundary after
λ t̄ > 10, although the number of equations of both formulations is equal to 5.

Figure 7: Unit-impulse response of semi-infinite layer by doubly-asymptotic boundary:MH = ML = 2

The accuracy of the doubly-asymptotic open boundary improves rapidly as its order in-
creases. This is demonstrated by using the orderMH = ML = 5 open boundary. Its dynamic
stiffness coefficient is plotted in Fig. 8. It is indistinguishable from the exact solution except
for the slight difference close to the cut-off frequency. The unit-impulse response is shown
in Fig. 9. Good agreement with the exact solution is observed for about the first 10 periods.
Compared with the unit-impulse response of theMH = 11 open boundary, which has the same
number of variables, in Fig. 6(a), the doubly-asymptotic open boundary is significantly more
accurate at late time. No “fictitious reflection” occurs.

Figure 8: Doubly-asymptotic continued fraction solution for dynamic stiffness coefficient of semi-infinite layer:
MH = ML = 5

To further investigate the convergence of the doubly-asymptotic open boundary, a long-time
analysis, with a duration ofλ tc/h = 200π, of the unit-impulse response is performed. As the
period of the asymptotic solution of the unit-impulse response isλ tc/h= 2π, this duration cor-
responds to 100 periods of vibration. The amplitude of the unit-impulse response decays from 1
at t = 0 to about 0.032. The result of theMH = ML = 24 open boundary is plotted in Fig. 10(a).
The unit-impulse response decays gradually and no “fictitious reflections” occur. The numer-
ical result is indistinguishable from the exact solution at the early stage (Fig. 10(b)) and in
the middle of the duration (Fig. 10(c)). At the end of the duration, the error is merely about
0.0015. Thus, theMH = ML = 24 open boundary is sufficiently accurate for most engineering
applications.
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Figure 9: Unit-impulse response of semi-infinite layer by doubly-asymptotic boundary:MH = ML = 5

(a) (b)

(c) (d)

Figure 10: Unit-impulse response of semi-infinite layer by doubly-asymptotic boundary:MH = ML = 24

The response to a surface traction prescribed as the Ricker wavelet shown in Fig. 4 (t̄s =
cts/h = 1, t̄0 = ct0/h = 0.2) is computed for three modesλ = 5, 10 and 15. It is similar to the
analysis of the semi-infinite layer by using modal superposition. The same amplitude of surface
tractionAR = 10 is assumed for all the three modes. The ratios of the dominate dimensionless
frequencies to the modal eigenvalues area0/λ = 2, 1 and 2/3, respectively. The responses of the
MH = ML = 24 doubly-asymptotic open boundary are plotted in Fig. 11. Very good agreement
is observed for all the three modes. For comparison, the responses of theMH = 99 singly-
asymptotic open boundary are also shown. As its dynamic stiffness coefficient is very accurate
above the cut-off frequency (a0 > λ ), the response for the modeλ = 5 (the ratioa0/λ = 2)
is very accurate (Fig. 11(a)) with only a small error aftert̄ > 45. As the mode increases, the
“fictitious reflections” appear. For the modeλ = 15 (the ratioa0/λ = 0.5), the amplitude of the
“fictitious reflections” is very large. In addition, the “fictitious reflections” arrive earlier as the
modal eigenvalue increases.
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(a) (b)

(c)

Figure 11: Response of semi-infinite layer to traction varying as Ricker wavelets byMH = ML = 24 doubly-
asymptotic boundary: (a)λ = 5; (b) λ = 10; (c)λ = 15

6 CONCLUSIONS

A novel approach to constructing the high-order doubly asymptotic open boundary of a semi-
infinite layer with a constant depth has been proposed. The derivation and implementation have
also been presented for the transient analysis of scalar waves propagating in a waveguide. It is
found from theoretical formulations and numerical experiments that

1. When a high-order open boundary is based solely on a high-frequency continued fraction
expansion of the dynamic stiffness, i.e. singly-asymptotic, it is equivalent to several well-
established high-order open boundaries. A singly-asymptotic open boundary condition
performs satisfactorily when the dimensionless frequency (ia0) content of the excitation
is mostly higher than the highest modal eigenvalue (λ ). However, it is unable to model
evanescent waves caused by the part of excitation having dimensionless frequency lower
than the highest modal eigenvalue. In a long-time analysis, the error in modeling evanes-
cent waves with the application of the singly-asymptotic open boundary condition appears
as numerical pollution similar to the “fictitious reflections” caused by simple boundary
conditions.

2. The dynamic stiffness of a doubly-asymptotic open boundary condition converges rapidly
to the exact solution in the frequency domain as its order increases. The doubly-asymptotic
open boundary condition is able to simulate evanescent waves and the late-time (low-
frequency) responses of the semi-infinite layer accurately. This shows a significant im-
provement in accuracy of the doubly-asymptotic open boundary condition in comparison
with the singly-asymptotic open boundary condition with the same number of terms.

3. The high-order doubly asymptotic open boundary condition is expressed as a system
of first-order ordinary differential equations in time. The two time-independent coeffi-
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cient matrices, the static stiffness and damping matrices, are symmetric and tri-diagonal.
Well-established time-stepping schemes in structural dynamics are directly applicable.
The amount of computer time and storage are the same as those required by the singly-
asymptotic open boundary condition of the same order.
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